Final - Computer Science 2 (2021-22)

Time: 3 hours.

Attempt all questions, giving proper explanations.

1. Consider the matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 2 & 3 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

(a) Apply the first iteration of the classical Jacobi method: Find the orthogonal matrix \mathbf{P} such that the $(3,4)$ th entry of $\mathbf{A}^{(1)}:=\mathbf{P}^{T} \mathbf{A P}$ is 0 , and write down $\mathbf{A}^{(1)}$. [5 marks]
(b) For a matrix \mathbf{M} let

$$
L(\mathbf{M}):=\sum_{i \neq j}\left|m_{i j}\right|^{2}
$$

be the sum of squares of the off-diagonal entries of \mathbf{M}. If $\mathbf{A}^{(k)}, k \geq 0$ are the successive iterates of the classical Jacobi method, show that

$$
L\left(\mathbf{A}^{(k+1)}\right)<L\left(\mathbf{A}^{(k)}\right) . \quad[4 \text { marks }]
$$

2. Consider a matrix $\mathbf{A}=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$ with $n \geq 2$. Consider the Gerschgorin discs

$$
D_{i}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq R_{i}(\mathbf{A})\right\}
$$

where $R_{i}(\mathbf{A}):=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|$.
(a) State Gerschgorin's first and second theorems. (no need to prove) [4 marks]
(b) Now let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Assume Gerschgorin's first and second theorems, and $\max _{i} R_{i}\left(\mathbf{A}^{(k)}\right) \xrightarrow{k \rightarrow \infty} 0$ for the iterates $\mathbf{A}^{(k)}$ in the classical Jacobi method. Let $b_{1}^{(k)} \leq b_{2}^{(k)} \leq \cdots \leq b_{n}^{(k)}$ be the ordering of the diagonal entries of $\mathbf{A}^{(k)}$ and $\lambda_{1} \leq \lambda_{2} \leq$ $\cdots \leq \lambda_{n}$ be the eigenvalues of \mathbf{A}. Argue that $\left(b_{1}^{(k)}, b_{2}^{(k)}, \cdots, b_{n}^{(k)}\right) \xrightarrow{k \rightarrow \infty}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$. [4 marks]
3. (a) Find the polynomial p_{3} of degree 3 which passes through the points $(0,1),(1, e),\left(2, e^{4}\right),\left(3, e^{9}\right)$. [3 marks]
(b) Give the best possible bound on $\sup _{x \in[0,4]}\left|e^{x^{2}}-p_{3}(x)\right|$. [3 marks]
(c) Find the Newton-Cotes approximation for $\int_{0}^{3} e^{x^{2}} d x$ using the quadrature points $0,1,2,3$. [2 marks]
(d) Give the best possible bound on the error in the approximation in 3c.
4. Let $f:[0,1] \rightarrow \mathbf{R}$ be an infinitely differentiable function. The Hermite interpolation polynomial approximating a function f at the interpolation points $0 \leq x_{0}<x_{1}<\cdots<x_{n} \leq 1$ is a polynomial of degree $2 n+1$ given by

$$
p_{2 n+1}(x)=\sum_{k=0}^{n} H_{k}(x) f\left(x_{k}\right)+\sum_{k=0}^{n} K_{k}(x) f^{\prime}\left(x_{k}\right)
$$

where

$$
\begin{aligned}
& H_{k}(x)=\left[L_{k}(x)\right]^{2}\left[1-2 L_{k}^{\prime}\left(x_{k}\right) \cdot\left(x-x_{k}\right)\right] \\
& K_{k}(x)=\left[L_{k}(x)\right]^{2}\left(x-x_{k}\right)
\end{aligned}
$$

Here

$$
L_{k}(x)=\prod_{\substack{i=0 \\ i \neq k}}^{n}\left(\frac{x-x_{i}}{x_{k}-x_{i}}\right)
$$

We showed in class that by choosing $x_{0}, x_{1}, \cdots x_{n}$ to be the distinct zeroes of ϕ_{n+1}, the $(n+1)$ th orthogonal polynomial in $[0,1]$, one obtains

$$
\int_{0}^{1} p_{2 n+1}(x) d x=\sum_{k=0}^{n} W_{k} f\left(x_{k}\right),
$$

where

$$
W_{k}=\int_{0}^{1}\left[L_{k}(x)\right]^{2} d x
$$

(a) Show that for this choice of $x_{0}<x_{1}<\cdots<x_{n}$ we have

$$
\int_{0}^{1}\left[L_{k}(x)\right]^{2} d x=\int_{0}^{1}\left[L_{k}(x)\right] d x \quad \text { for each } k . \quad[5 \text { marks }]
$$

(b) Show that for this choice of $x_{0}<x_{1}<\cdots<x_{n}$ we have

$$
\int_{0}^{1} f(x) d x=\sum_{k=0}^{n} W_{k} f\left(x_{k}\right)
$$

whenever $f \in \mathscr{P}_{2 n+1}$ (the collection of polynomials of degree at most $2 n+1$).

marks]

(c) Let q_{n} be the Lagrange polynomial of degree n approximating f at the interpolation points $x_{0}, x_{1}, \ldots, x_{n}$ chosen above. Show that

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} q_{n}(x) d x
$$

whenever $f \in \mathscr{P}_{2 n+1}$. [3 marks]
(d) For $n=1$ find x_{0}, x_{1}. [4 marks]
(e) Explain why the Gauss quadrature rule for $n=1$ is better than the trapezium rule. [2 marks]
5. Let $f:[0, T] \times \mathbf{R} \rightarrow \mathbf{R}$ be such that

- f is continuous on $[0, T] \times \mathbf{R}$,
- $\frac{\partial f}{\partial t}$ and $\frac{\partial f}{\partial x}$ are bounded on $[0, T] \times \mathbf{R}$.

Consider the solution $x:[0, T] \rightarrow \mathbf{R}$ of the differential equation

$$
\begin{aligned}
\frac{d x}{d t} & =f(t, x), \\
x(0) & =\alpha .
\end{aligned}
$$

Split the interval $[0, T]$ into subintervals of size $h>0$ so that $0=t_{0}<t_{1}<\cdots<t_{n}=T$ with $t_{i}=i h$ are the grid points. Consider the Euler approximation of x on the grid points :

$$
\begin{aligned}
\tilde{x}\left(t_{i}\right) & =\tilde{x}\left(t_{i-1}\right)+f\left(t_{i-1}, \tilde{x}\left(t_{i-1}\right)\right), \quad 1 \leq i \leq n \\
\tilde{x}(0) & =\alpha .
\end{aligned}
$$

Prove in detail that $\sup _{i}\left|x\left(t_{i}\right)-\tilde{x}\left(t_{i}\right)\right|=O(h)$ as $h \rightarrow 0 . \quad[7$ marks]

